Calibration

Boom

Air Blast

Others

The Big Three

Output
Speed
Coverage

Output

- Correct Pressure
 - Deepens on nozzle design
 - To low not enough to make effective spray pattern
 - To high too many fines.
- Correct height
 - Depends on cropping systems
 - Depends on nozzle spacing
- Correct Spacing
 - Overlap needed about 1/3 on each side

Speed

- Crop or target penetration
 - Slower speeds equals more penetration.
 - To slow equals excessive overspray
- Terrain
 - Boom bounce and rocking
 - Equipment capabilities
- Safety
 - Operator safety
 - Equipment damage

Coverage

- Minimum volume required.
 - Crop density
 - PPP labels (point: high concentration may become phototoxic.)
 - Intended purpose
- Maximum volume limit.
 - Run off (point: may waste product, or reduce its efficacy)
 - PPP labels
- Spray modifiers
 - Spreaders
 - Stickers
 - Buffers (Many products have pH limitations, match buffer)

Things to Assure

Uniformity

No (Minimal) Drift

Crop & Worker safety

Uniformity

- Nozzles
 - All outputs + or -5 % (one ounce up or down in 20)
 - Uniform spray pattern
 - Low fine out put. (you often cannot see the fine particles)
- Boom
 - Correct height
 - Uniform height
- Pressure
 - Correct pressure
 - Uniform pressure (watch out for pulsing with diaphragm)

NO (or Minimal) Drift

- Weather
 - Correct wind
 - No inversion
 - Temperature and Humidity
- Spray
 - No or very low fines
 - Hood
- Additives
 - Drift agents

Crop & Worker Safety

- Crop
 - Weather
 - Compatibilities
- Worker
 - Weather
 - PPE

Things to Think about

Nozzle choice

Filters

Clean up

Nozzle choice

- Style
 - Flat Fan (herbicide)
 - Hollow Cone (air blast)
 - Special
- Size & angle
 - Coverage vs. drift potential
- Durability
 - Best you can afford
 - Penny wise Pound foolish

Filters

In Line

- 16 to 200 mesh sizes
- Nylon and aluminum
 - Hint: must be compatible with spray mix

At nozzle

- Screen alone (mesh 16 200, comes in SS, nylon, brass, aluminum & polypropylene)
- Screen with Pressure shut off shuts off at 5 psi
 - Hint: remember to add that 5 psi to your pressure setting

Cleaning

- Each Tank
- When spray pattern changes
- Soft bristle brush

Clean up

- Water flush
 - Tank
 - Spray line
- Cleaners
 - General
 - Move to a non-labeled crop
- Leaf over Mix
 - Aim for zero (hint last tank maybe a part tank)
 - Safely Store for later use. (hint mark with mix and date with a durable pen)

Other Considerations

Water

Compatibility

Check Row

Water

- pH
 - PPP label
 - Buffers
- Hardness
 - Spray modifiers
- Turbidity
 - Tank mix needs
 - Change source

Compatibility

- Label
 - Check PPP labels
 - Add in correct order (soluble packets, WP's, F, EC's then Oils)
- Jar test
 - Check unfamiliar mixes in a jar before committing to a tank
 - Check how much agitation is required
- Agents
 - Compatibility agents
 - Suspension agents
 - Surfactants add last when tank is nearly full to prevent excessive foaming
 - Anti foaming agent when needed

Check Row

- How well did I do
 - Were \$ spent effectively
 - Did I get the control I wanted
- Crop symptoms
 - Did I hurt my crop
 - Did I need the control

Useful formulas

GPA

Speed

Nozzle Output

Speed of Travel

• Mph = 60/ Seconds to drive 88 Feet

• If it takes 24.5 seconds to travel 88 feet then your speed equals 2.25 MPH

60 ---- = 2.25 MPH 24.5

Hint a GPS can also tell you speed of travel

Nozzle Output

- Catch out put of each nozzle for one minute
- Divide total ounces caught by 128
- to determine the gallons applied per minute.

51.2

 $---- = .4 \, G/M$

128

Hint an 8004 nozzle should put out .4 gallons/minute at 40 PSI

Gallons/Acre

- Determine the optimum nozzle based on spray needs.
- Determine the best nozzle pressure.
- Measure the nozzle output, this gives you Nozzle
 Gallons
- Determine the desired speed in MPH based on terrain & needs.
- Determine the optimum nozzle height and spacing, this gives you **Nozzle spray width** (in feet)
- Using the following formula determine G/A

495 X Gallons

Speed X Nozzle Width

Gallons/Acre

- Nozzle to be used XR Teejet 11004VS
- Nozzle pressure **40 psi** (gage pressure to be 45 psi because screens with check valve used)
- Nozzle Gallons .4
- Speed 2.4 MPH
- Nozzle spray width 12 inches

$$\frac{495 \text{ X} \cdot 4}{2.4 \text{ X} \cdot 1} = 82.5 \text{ GPA}$$

Gallons/Acre

•A 100 gallon tank at 82.5 GPA will do 1.2 acres per tank when traveling at 2.4 MPH